

Presentation to Savannah River Site Citizens Advisory Board

DWPF Process Improvements & Tank 13 Modifications

Jean M. Ridley, P.E.

Liquid Waste ARRA Federal Project Director

Department of Energy (DOE)

Savannah River Operations Office

September 27, 2011

PURPOSE and AGENDA

Purpose: to respond to the WMC request and to meet the FY 11 Workplan

Agenda:

- Defense Waste Processing Facility (DWPF) Process Improvements
 - > Bubblers
 - > Alternate Reductant
 - > Dry Frit
 - > Strip Effluent Feed Tank to Slurry Mix Evaporator Tank
 - > Water Separation from Decontamination Frit
- Tank 13 Modifications

ACRONYMS

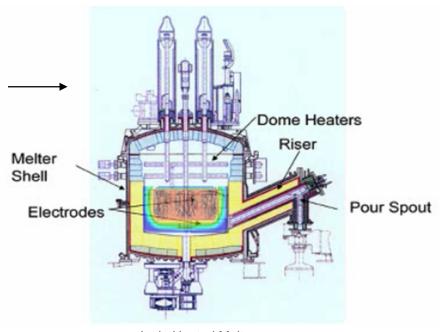
- ➤ Decon Decontamination
- ➤ DWPF Defense Waste Processing Facility
- ➤ MFT Melter Feed Tank
- ➤ SEFT Strip Effluent Feed Tank
- SME Slurry Mix Evaporator Tank
- ➤ SRAT Sludge Receipt and Adjustment Tank
- ➤ SWPF Salt Waste Processing Facility

DEFINITIONS

- > ARRA- American Recovery and Reinvestment Act
- Frit a silica based product (glass) used to vitrify high level waste
- Reductant a chemical reducing agent
- Strip Effluent the waste stream produced from the removal of cesium from sludge or salt waste
- ➤ Sludge the by-product waste of chemical separations activities at the Savannah River Site
- ➤ Slurry mixture of a liquid with a solid to allow the solution to be transferred between tanks

LIQUID WASTE ARRA

- Workscope 41 activities
 - reduced the operational risk of the liquid waste program
 - provided needed infrastructure modifications and equipment
 - activities support Salt Waste Processing Facility, tank closure and operations, Saltstone and the Defense Waste Processing Facility
- ◆ \$200M
- 99% of all physical work completed
- 1% late delivery of four pumps, financial closeout


DWPF Chemical Process Cell

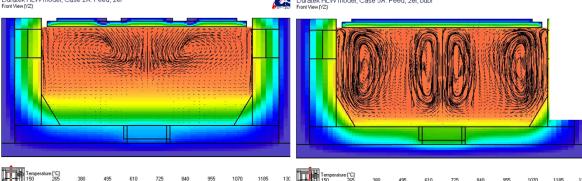
SRAT – Sludge Receipt And Adjustment Tank SME – Slurry Mix Evaporator Tank MFTMelter Feed Tank

Melter Feed Prep

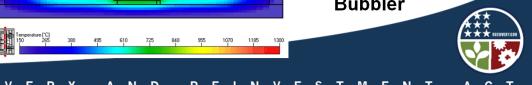
- Alternate reductant
- Dry process frit addition
- Strip Effluent Tank options
- Water separation from decon frit

DWPF Melt Cell

Joule Heated Melter


Vitrification

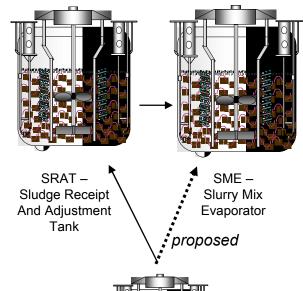
Melter Bubblers



- Melter Bubblers
 - Four Bubblers installed in September 2010
 - Melt rate has increased from approximately 130 lb/hr to 200 lb/hr
 - ➤ Increased canister production from ~200 cans/year to 300+ cans/year
 - > First set of bubblers replaced upon reaching design life of 6 months
 - Second set remains in service
 - Optimization of bubbler operation continues

- Alternate Reductant in the Sludge Receipt and Adjustment Tank (SRAT)
 - ➤ Formic acid (CH₂O₂)(reductant) currently used in the SRAT chemically reduce mercury (Hg⁺²⁾ to elemental mercury (Hg) and manganese (Mn⁺⁴) to manganese (Mn⁺²) allows removal of Hg and reduces foaming
 - > Minimize the use of formic acid by an alternate reductant
 - > expected to increase the evaporation rate
 - reduce processing time up to 20%
 - Multiple combinations of reductant evaluated
 - ➤ A glycolic acid (C₂H₄O₃) selected for further process development
 - ➤ 18 24 months from deployment

- > Dry Frit Addition to the Slurry Mix Evaporator (SME) Tank
 - Replace the current slurry-fed transfer design with a dry conveying system
 - > Cycle time reduction of up to 7% due to less evaporation time
 - Contract in place with the selected dry frit conveying system vendor
 - ➤ Project under evaluation due to forecasted limited funding in FY12.

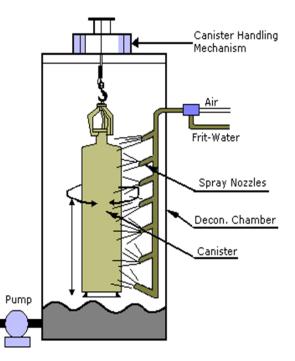


- Strip Effluent Feed Tank (SEFT) to Slurry Mix Evaporator (SME) Tank
 - ➤ Install the capability to transfer strip effluent to either the Sludge Receipt and Adjustment Tank and/or Slurry Mix Evaporator Tank
 - ➤ Strip Effluent comes from the cesium removal from sludge or salt waste stored in the Strip Effluent Feed Tank
 - Provide flexibility to balance evaporation loads
 - Piping (jumpers) inside the process cell have been fabricated but not installed
 - Work outside the process cell in the connecting corridor continues

Ready by March 2012

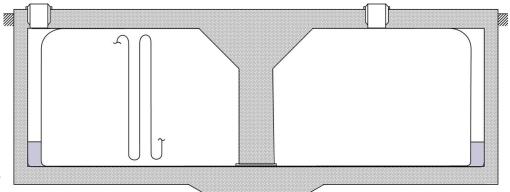
www.em.doe.gov

DWPF Chemical Process Cell



SEFT – Strip Effluent Feed Tank

- Water Separation from Decontaminated Frit
 - Currently a frit slurry is used to decontaminate (wash) the outside of a waste canister
 - ➤ Improvement to remove water from the slurry before it goes back to the slurry mix evaporator tank
 - > Cycle time reduction of up to 20%
 - Reduces water returned to the tank farms
 - > Performed testing and assessed water separations technology
 - Hydro-cyclone design selected
 - Future development dependent on funding



TANK 13 – BACKGROUND

- Tank 13 is a Type II waste tank located in H Tank Farm
- Currently, Tank 13 contains 277K gallons of sludge
- Upgrades are required to:
 - Initially perform bulk waste removal for sludge transfers to support sludge batch 8
 - Ultimately provide transfer capability for tanks 14 and 15 to tank 51

Type II (1.03 Million gallon capacity)

TANK 13 – SCOPE

- Disassembling and removing existing equipment
- Riser probing to identify potential interferences in the tank
- Procuring and installing three submersible mixer pumps, a submersible transfer pump, electrical substation, and electrical equipment skid
- Tying the transfer pump into an existing transfer line
- Procuring and installing flow instruments, hydrogen level monitors and alarms, and purge and ventilation alarms

TANK 13 - HIGHLIGHTS

> Three submersible mixer pumps were procured and tested:

Installing the pump into the test stand

Testing at the TNX Facility

TANK 13 - HIGHLIGHTS

➤ Three submersible mixer pumps were installed into the tank:

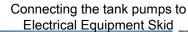
Disassembling and removing existing equipment

Installing the pump into the tank

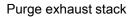
TANK 13 – HIGHLIGHTS

An electrical substation skid and an electrical equipment skid were fabricated and installed to provide power for the pumps and other tank top equipment:

Electrical substation


Inside Electrical Equipment Skid

Installing the Electrical Equipment Skid on pad

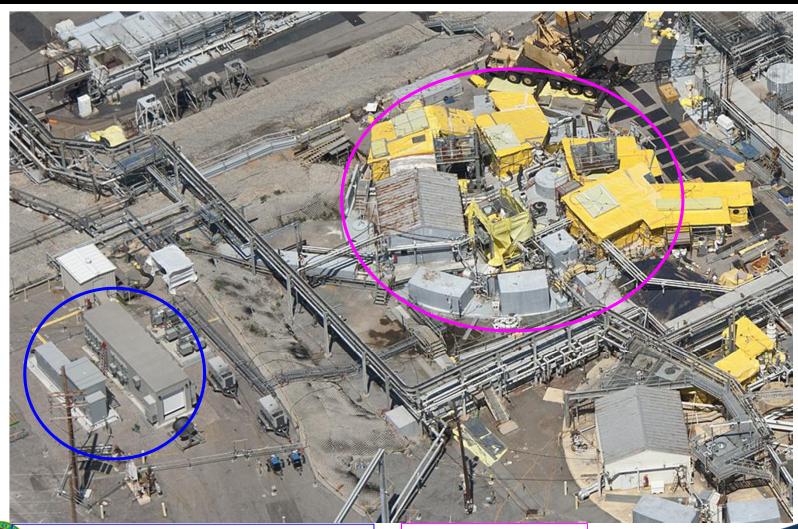

TANK 13 - HIGHLIGHTS

> Other infrastructure improvements:

Hydrogen analyzer

Infrastructure mods

Inlet HEPA filter housing



Transfer line excavation and installation

TANK 13 – THE BIG PICTURE

Electrical substation and equipment skids

Tank 13 Aerial View

CONCLUSION

- Liquid Waste ARRA work is physically complete
- Defense Waste Processing Improvements well underway
- Tank 13 infrastructure modifications completed

